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ABSTRACT
Sequential recommendation aims at predicting the next item that
the user may be interested in given the historical interaction se-
quence. Typical neural models derive a single history embedding
to represent the user’s interests. Moving one step forward, recent
studies point out that multiple sequence embeddings can help to
better capture multi-faceted user interests. However, when ranking
candidate items, these methods usually adopt the greedy inference
strategy. This approach uses the best matching interest for each
candidate item to calculate the ranking score, neglecting the tar-
get interest distribution in different contexts, which might lead
to incompatibility with the current user intent. In this paper, we
propose to enhance multi-interest recommendation by predicting
the target user interest with a separate interest predictor and a
specifically designed distillation loss. The proposed framework con-
sists of two modules: the 1) multi-interest extractor to generate
multiple embeddings regarding different user interests; and the 2)
target-interest predictor to predict the interest distribution in the
current context, which will be further utilized to dynamically ag-
gregate multi-interest embeddings. To provide explicit supervision
signals to the target-interest predictor, we devise a target-interest
distillation loss that uses the similarity between the target item and
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multi-interest embeddings as the soft label of the target interest.
This helps the target-interest predictor to accurately predict the
user interest at the inference stage and enhances its generalization
ability. Extensive experiments on three real-world datasets show
the effectiveness and flexibility of the proposed framework.
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1 INTRODUCTION
Recommender systems play a crucial role in many online services,
such as e-commerce, advertising, and so on. Traditional recommen-
dation methods are mainly based on collaborative filtering [14, 26],
which assumes that similar users will have similar preferences.
Many recent works formalize recommendation as a sequential pre-
diction task [2, 22, 32], aiming to predict the next item given the
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historical interaction sequence. Most advanced models adopt neural
networks (e.g., recurrent neural network [10], self-attention [13])
to represent a user’s history as an embedding vector, which is
subsequently utilized to predict the next item.

Recently, researchers point out that it might not be adequate
to use a single embedding to represent diverse interests of a user
in different aspects [2, 17]. For example, in the emerging recom-
mendation scenario on smart TV, different members in a family
share the same TV but prefer different types of programs. A user
in this scenario corresponds to a family instead of a single person.
Besides, a user in e-commerce may also have multi-faceted pref-
erences (e.g., jewelry, handbags, and cosmetics) depending on the
context. Hence, a proposal of representing a user with multiple em-
beddings has been experimented to capture diverse user interests
and proved effective. Many techniques (e.g., dynamic routing [17],
self-attention [2]) have been explored to generate multi-interest
embeddings from a user’s interaction history. At the inference stage,
each embedding is able to retrieve a set of candidate items indepen-
dently. To generate the final recommendation, the common practice
is to choose the overall Top-K items with the maximal matching
scores, which is referred as greedy inference strategy [2, 3].

However, we argue that this greedy inference strategy fails to
take full advantage of multi-interest user embeddings, which is
equivalent to only considering the best matching interest for each
candidate item. As a result, this approach inclines to retrieve items
that match either of the user’s interests, disregarding the target
interest distribution in different contexts. In this paper, we use
interest distribution to represent the user’s dynamic preference
over different interests. For example, we find it is common that
an interaction sequence on a smart TV consists of many children
programs and a few movies. Although children programs are likely
to have higher matching scores most of the time, there might be
some patterns that indicate a stronger intention for movies. In e-
commerce, after a user bought a cellphone, it should be factored in
that this user is less likely to be interested in purchasing another
cellphone within a short period of time. Hence, we are motivated to
model the target interest distribution in different contexts, which
helps to capture dynamic user intent and hence make more accurate
recommendations at the inference stage.

In this paper, we propose aTarget-interest distillation framework
forMulti-interest Recommendation, called TiMiRec. Specifically,
TiMiRec consists of two modules: the 1) multi-interest extractor
generates multiple interest embeddings from the user’s interaction
sequence, while the 2) target-interest predictor estimates the inter-
est distribution in the current context. The basic idea of TiMiRec is
to distill the knowledge of predicting the target interest distribu-
tion to a separate module, so that multi-interest embeddings can
be dynamically aggregated by the predicted interest distribution.
Notice that there is generally no labelling data for the actual user
interest, which makes it hard to provide appropriate supervision
signals to the target-interest predictor. To solve this problem, we
use the similarity between the target item and each multi-interest
embedding as the soft label of the target interest during training. A
knowledge distillation loss is devised tomatch the predicted interest
distribution and the soft label. This will facilitate the generalization
ability of the target-interest predictor to infer the target interest dis-
tribution in different contexts. We conduct extensive experiments

on three datasets, including two public data and one industrial
dataset. Our proposed framework is flexible to work with various
multi-interest recommendation methods and obtains significantly
superior performances compared to state-of-the-art methods. The
main contributions of this paper can be summarized as follows:

• We propose that it is sub-optimal to adopt the greedy infer-
ence strategy in multi-interest recommendation. The target
interest distribution provides additional supervision signals
during training but is usually ignored.

• A simple but effective framework, TiMiRec, is devised to
adaptively aggregate multiple interests based on the target
user interest. A separate target-interest predictor together
with a knowledge distillation loss are introduced to infer the
target interest distribution in different contexts.

• We conduct extensive experiments on three real-world data
sets, showing that the proposed method achieves signifi-
cant performance improvements compared to state-of-the-
art multi-interest recommendation methods.

2 RELATEDWORK
2.1 Sequential Recommendation
Different from general recommendation methods [9, 34], sequen-
tial recommendation leverages users’ historical sequences to better
capture dynamic user intent, which attracts increasing attention
in recent years. Traditional sequential methods depend on Markov
chains to model the transition pattern between items [24, 27]. Re-
cently, with the development of deep learning, a lot of works utilize
different neural networks to encode the historical sequence to a
hidden vector [10, 16, 31, 38, 39]. GRU4Rec [10] first introduces
Recurrent Neural Network (RNN) to the sequential recommenda-
tion domain and achieves impressive performance improvements
compared to traditional methods. Caser [28] and NextItNet [39] uti-
lizes Convolution Neural Network (CNN) based methods to capture
high-order Markov chains by applying convolutional operations
on historical sequences. Besides, inspired by the effectiveness of
attention mechanism in other domains [1, 37], SASRec [13] first
applies self-attention to model the mutual influence between his-
torical interactions, achieving remarkable performance gains. Ti-
SASRec [19] further introduce time intervals into the calculation of
self-attention. Despite the great success of deep-learning sequential
recommendation models, most of them focus on the structure of
the sequence encoder and only give an overall embedding from
the user’s interaction sequence, which is not enough to cultivate
multi-faceted user interests.

2.2 Multi-Interest Recommendation
Recent studies begin to focus on diverse user interests [2, 17, 41] to
better understand user intent in practice. Some early studies use ex-
tra side information to capture dynamic user intents [29]. Inspired
by the structure of capsule network [25], MIND [17] uses capsules
to represent multiple user interests based on the dynamic routing
mechanism. ComiRec [2] devises a multi-interest extraction layer
to derive multiple embeddings from the user interaction sequence.
The extraction method can be based on either dynamic capsule
routing or attention mechanism. Some follow-up studies [22] also
adopt multi-interest extraction to cultivate different user interests.
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Different from a single sequence embedding in traditional methods,
each interest vector here can retrieve a set of items based on the
matching score. To generate the final candidate items, the common
practice is to choose the items with the overall maximal matching
scores across interests [2, 3]. Some studies [17] use attention mech-
anism to aggregate multi-interest embeddings, but the aggregation
weight is solely instructed by the recommendation loss. None of
them considers the additional supervision signal from the target
interest distribution addressed in our TiMiRec framework.

2.3 Knowledge Distillation
Knowledge distillation [11] is first proposed for model compression
and acceleration, which aims to learn a small student model from
a large teacher model. The distillation loss is usually defined to
match the output logits between the teacher model and the student
model [6]. However, the application scope of knowledge distillation
is not restricted to model compression. This technique has been
shown to be effective in many tasks such as self-distillation [40]
and learning from noise labels [20]. It is also beneficial to lever-
age this idea to enhance the model effectiveness and robustness in
recommendation. For example, some privileged features are only
available in the offline setting but absent for online serving. Recent
work [36] tries to distill the knowledge brought by privileged fea-
tures to another same-structure network with only regular features,
which is proven to be effective in practice. In the multi-interest
recommendation scenario, the target interest distribution is also
informative but only available during training. This inspires us to
utilize the knowledge distillation technique to leverage the soft la-
bel of the target interest as an additional supervision signal, which
helps to accurately predict the user interest at the inference stage.

3 METHODOLOGY
3.1 Preliminaries
3.1.1 Problem Formulation. LetU and I denote the user and item
set, respectively. For each user 𝑢 ∈ U, we are given a chronologi-
cally ordered list [𝑖𝑢,1, 𝑖𝑢,2, · · · , 𝑖𝑢,𝑁𝑢

], where each element 𝑖𝑢,𝑡 ∈ I
is the interacted item at time step 𝑡 and 𝑁𝑢 is the length of the in-
teraction sequence. Then the task of sequential recommendation is:
given the historical sequence before the target time step 𝑡 , denoted
as 𝑆𝑢,𝑡 , generating an ordered list of items that the user 𝑢 may be
interested in.

3.1.2 Multi-Interest Recommendation. Different from typical se-
quential recommendation that gives an overall embedding from
a user’s behavior sequence, multi-interest recommendation meth-
ods produce 𝐾 interest embeddings based on the user historical
interaction sequence 𝑆𝑢,𝑡 :

V𝑢,𝑡 = [v1𝑢,𝑡 , · · · , v𝐾𝑢,𝑡 ] ∈ R𝐷×𝐾 , (1)

where𝐷 is the dimension of the embedding space. Given a candidate
item 𝑖𝑢,𝑡 , the interest embedding with the maximal matching score
is utilized as the user representation [2]:

v𝑢,𝑡 = V𝑢,𝑡 [:, argmax
(
V𝑇𝑢,𝑡 i𝑢,𝑡

)
], (2)

where i𝑢,𝑡 is the embedding of the candidate item. Then the rank-
ing score can be calculated as the dot product between the user

representation and target item embedding (i.e., 𝑓 (𝑢, 𝑖𝑢,𝑡 ) = v𝑇𝑢,𝑡 i𝑢,𝑡 ).
This encourages different sequence embeddings to represent dif-
ferent aspects of interests, cause only the most relevant interest
embedding will be updated each time. At the inference stage, the
greedy inference strategy is usually adopted that derives the ranking
score in a similar way with training. The best matching interest
embedding will be used to calculate the ranking score.

3.2 TiMiRec Framework Overview
Figure 1 shows the overall structure of the proposed framework.
There are two major modules in our TiMiRec: the 1) multi-interest
extractor 𝐹Φ𝐸

(·) parameterized by Φ𝐸 and the 2) target-interest
predictor𝐺Φ𝑃

(·) parameterized by Φ𝑃 . Previous multi-interest rec-
ommendation methods mainly focus on how to derive multiple
sequence embeddings to represent diverse user interests (i.e., struc-
ture of multi-interest extractor), and then use the most compatible
interest when retrieving candidate items. Differently, we introduce a
target-interest predictor to infer the interest distribution according
to the current context:

z𝑞𝑢,𝑡 = 𝐺Φ𝑃
(𝑆𝑢,𝑡 ) ∈ R𝐾 , (3)

which is utilized to aggregate multi-interest embeddings as the user
representation:

v𝑢,𝑡 = V𝑢,𝑡 softmax(z𝑞𝑢,𝑡 ). (4)

This predicted interest distribution z𝑞𝑢,𝑡 is supposed to be propor-
tional to the probability of activating each interest in the current
context. Considering that user intents are latent and generally hard
to predict, we argue that it is not adequate to learn the target-
interest predictor only with the common next-item recommen-
dation loss. To solve this problem, we propose a target-interest
distillation loss to facilitate the generalization capability of the
target-interest predictor. We use the similarity between the target
item and multi-interest embeddings as a soft label of the target
interest, and the predicted interest distribution z𝑞𝑢,𝑡 is encouraged
to be close to the target interest distribution (denoted as z𝑝𝑢,𝑡 ). This
additional supervision signal helps the target-interest predictor
accurately predict the target interest in different contexts.

It is noteworthy that there are no requirements to the concrete
structure of the backbone modules, which leads to a flexible frame-
work that can improve various multi-interest recommendationmod-
els. Next, we will first introduce the target-interest distillation loss
and the training procedure of TiMiRec in Section 3.3 and 3.4, and
then give an example instantiation for each module in Section 3.5.

3.3 Target-Interest Distillation Loss
Although our TiMiRec uses a separate target-interest predictor to
generate the interest distribution in different contexts, there is no
explicit supervision on the predicted interest distribution. If it is
only used to aggregate multi-interest embeddings and optimized
by the final next-item recommendation loss L𝑟𝑒𝑐 , the model might
find some shortcuts to mainly update multi-interest embeddings
rather than the target-interest predictor. This motivates us to find
other supervision signals to assure the rationality of the predicted
interest distribution.

Note that given the well-learned multi-interest extractor and the
target item (only available during training), we can measure the
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Figure 1: Overview of the proposed TiMiRec framework. TiMiRec mainly consists of two modules: 1) multi-interest extractor
and 2) target-interest predictor. The former derives multiple interest embeddings from a user’s interaction sequence, while
the latter gives the predicted interest distribution in the current context. Then we use the predicted interest distribution to
aggregate multi-interest embeddings and calculate the next-item prediction loss. Besides, a target-interest distillation loss
is devised to instruct the target-interest predictor, where the soft label of the target interest is derived by the compatibility
(cosine similarity) between the target item and multi-interest embeddings, serving as an additional supervision signal.

target interest distribution by the similarity between multi-interest
embeddings V𝑢,𝑡 = [v1𝑢,𝑡 , · · · , v𝐾𝑢,𝑡 ] and the target item i𝑢,𝑡 :

z𝑝𝑢,𝑡 = sim(V𝑢,𝑡 , i𝑢,𝑡 ) =
[

v1𝑢,𝑡
| |v1𝑢,𝑡 | |2

i𝑢,𝑡
| |i𝑢,𝑡 | |2

, · · · ,
v𝐾𝑢,𝑡

| |v𝐾𝑢,𝑡 | |2
i𝑢,𝑡

| |i𝑢,𝑡 | |2

]
.

(5)
Here we use the cosine similarity to measure the compatibility
between each interest and the target item. This target interest
distribution z𝑝𝑢,𝑡 ∈ R𝐾 reflects how the actual interacted item is
related to different interests of the user, which is suitable to be
taken as an additional supervision signal (soft label) to instruct
the target-interest predictor in our TiMiRec. As a result, we pro-
pose a target-interest distillation loss inspired by the knowledge
distillation technique [6], which encourages the predicted interest
distribution (output of the student model) to be close to the target
interest distribution (output of the teacher model).

Remember that the predicted interest distribution is denoted as
z𝑞𝑢,𝑡 . First we derive the normalized interest distribution for the
predicted one and the target one:

q𝑢,𝑡 =
exp(z𝑞𝑢,𝑡 / 𝑇 )∑𝐾

𝑘=1 exp(z
𝑞
𝑢,𝑡 [𝑘] / 𝑇 )

, (6)

p𝑢,𝑡 =
exp(z𝑝𝑢,𝑡 / 𝑇 )∑𝐾

𝑘=1 exp(z
𝑝
𝑢,𝑡 [𝑘] / 𝑇 )

. (7)

Here 𝑇 is a hyperparameter called distillation temperature, which
controls the smoothness of the normalized distribution. Then the

target-interest distillation loss can be directly defined as:

L′
distill = −

∑︁
𝑢∈U

𝑁𝑢∑︁
𝑡=2

p𝑇𝑢,𝑡 log(q𝑢,𝑡 ). (8)

This is a standard distillation loss [6] that intuitively pushes up the
similarity between the predicted and the target interest distribution.
The distillation loss makes use of multi-interest embeddings to
measure the target interest distribution, which provides additional
supervision signals to the target-interest predictor and endows the
generalization ability to infer the interest distribution in different
contexts.

Meanwhile, notice that the target interest distribution in our
scenario is not a fixed target but derived by the similarity between
multi-interest embeddings and the target item embedding. Directly
optimizing the above distillation loss will also make the target
interest distribution be updated to approach the predicted one,
which might harm the well-learned multi-interest extractor. As a
result, we add a stop-gradient operator to the normalized target
interest distribution p𝑢,𝑡 as follows:

Ldistill = −
∑︁
𝑢∈U

𝑁𝑢∑︁
𝑡=2

stopgrad(p𝑇𝑢,𝑡 ) log(q𝑢,𝑡 ) . (9)

In this way, the gradients of this loss will only affect the target-
interest predictor as expected. Otherwise the rationale of the learned
multi-interest embedding is likely to be influenced. We will show
the influence of the stop-gradient operation in Section 4.4.
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Algorithm 1 Learning algorithm of TiMiRec
Input: multi-interest extractor structure 𝐹Φ𝐸

, target-interest
predictor structure 𝐺Φ𝑃

, interest number 𝐾
Output: parameters Φ𝐸 , Φ𝑃

1: while not converged do
2: V𝑢,𝑡 = 𝐹Φ𝐸

(𝑆𝑢,𝑡 ).
3: v𝑢,𝑡 = V𝑢,𝑡 [:, argmax

(
V𝑇𝑢,𝑡 i𝑢,𝑡

)
].

4: Pretrain multi-interest extractor with Lrec.
5: end while
6: while not converged do
7: V𝑢,𝑡 = 𝐹Φ𝐸

(𝑆𝑢,𝑡 ).
8: z𝑞𝑢,𝑡 = 𝐺Φ𝑃

(𝑆𝑢,𝑡 ).
9: z𝑝𝑢,𝑡 = sim(V𝑢,𝑡 , i𝑢,𝑡 ), i.e., Eq.(5).
10: Calculate target-interest distillation loss Ldistill.
11: v𝑢,𝑡 = V𝑢,𝑡 softmax(z𝑞𝑢,𝑡 ).
12: Calculate next-item recommendation loss Lrec.
13: Finetune Φ𝐸 and Φ𝑃 with L, i.e., Eq.(11).
14: end while
15: return Φ𝐸 , Φ𝑃

3.4 Learning Algorithm
Considering that the rationale of the target interest distribution
relies on meaningful multi-interest embeddings, we adopt a two-
stage learning strategy to facilitate the training process. Specifically,
we first disregard the target-interest predictor and pretrain the
multi-interest extractor in a similar fashion with previous multi-
interest recommendation models [2]. The best matching interest
embedding is taken as the user representation v𝑢,𝑡 (i.e., Eq.(2)) to
accomplish the next-item prediction task. Following the common
practice, the objective is defined as a pairwise ranking loss [23]:

Lrec = −
∑︁
𝑢∈U

∑︁
𝑡

log𝜎
(
v𝑇𝑢,𝑡 i𝑢,𝑡 − v𝑇𝑢,𝑡 i

−
𝑢,𝑡

)
, (10)

where 𝑖−𝑢,𝑡 is a negative item randomly sampled from items the
user has not interacted with, and 𝜎 (·) is the sigmoid function. This
pretraining stage makes sure the multi-interest extractor be able
to generate meaningful interest embeddings according to the user
interaction sequence.

At the secend stage, we turn to use the interest distribution gen-
erated by the target-interest predictor to derive the user represen-
tation (i.e., Eq.(4)). The multi-interest extractor and target-interest
predictor will be finetuned by jointly optimizing the next-item
prediction loss and the proposed target-interest distillation loss:

L = Lrec +𝑇 2Ldistill . (11)

The coefficient𝑇 2 of the target-interest distillation loss is to balance
the two supervision signals. Studies in the literature of knowledge
distillation [6] show that the gradient of the temperature-scaled
distillation loss will be scaled by 1/𝑇 2. This coefficient makes the
target-interest distillation loss adaptively compatible with the next-
item prediction loss. The detailed learning algorithm is shown
in Algorithm 1. We will compare different learning strategies in
Section 4.4.

3.5 Module Instantiation
Note that TiMiRec ismodel-agnostic and there is no specific restricts
to the concrete structure of each module. In this section, we give an
example instantiation for each module in TiMiRec. The principle
here is to keep simple and effective. We leave the investigation
of more complex implementations as future work to center our
contribution in the overall learning framework.

3.5.1 Multi-Interest Extractor. The multi-interest extractor is re-
sponsible for generating 𝐾 interest embeddings V𝑢,𝑡 ∈ R𝐷×𝐾 based
on the user interaction sequence 𝑆𝑢,𝑡 . Here we use a self-attentive
method [21] as an example instantiation, which is also adopted in
previous work about multi-interest recommendation [2].

The input item sequence 𝑆𝑢,𝑡 with length 𝑛 is first transformed
into embeddings H ∈ R𝐷×𝑛 through an embedding layer. To make
use of the order information, we add trainable positional embed-
dings [30] to the input item embeddings. Then we can get the
multi-interest attention matrix as

A = softmax
(
W𝑇

2 tanh(W1H)
)𝑇
, (12)

whereW1 andW2 are trainable parameters with size 𝐷𝑎 × 𝐷 and
𝐷𝑎 × 𝐾 . The final multi-interest embeddings V𝑢,𝑡 is computed by

V𝑢,𝑡 = HA. (13)

This is like aggregating the historical item sequence in 𝐾 different
ways by changing the standard 𝐷𝑎-dimensionalW1 to a parameter
matrix with size 𝐷𝑎 × 𝐾 , which is parameter efficient and shown
to be effective [2].

3.5.2 Target-Interest Predictor. For fair comparisons with other
multi-interest recommendation methods, we consider the same
history behavior sequence 𝑆𝑢,𝑖 as input to generate the predicted
interest distribution z𝑞𝑢,𝑡 . Specifically, we first encodes the history
sequence to a summary embedding s𝑢,𝑡 ∈ R𝐷 with Gated Recurrent
Unit (GRU) [4] as the sequence encoder:

s𝑢,𝑡 = GRU(H′), (14)

where H′ is transformed from 𝑆𝑢,𝑡 with another embedding layer.
We use the last hidden state of GRU as the final representation s𝑢,𝑡 .
Then the predicted interest distribution z𝑞𝑢,𝑡 ∈ R𝐾 can be derived
by a 2-layer projection MLP head:

z𝑞𝑢,𝑡 = W𝑞

2 · ReLU
(
W𝑞

1 · s𝑢,𝑡 + b1
)
+ b2, (15)

where W𝑞

1 ∈ R𝐷×𝐷 ,W𝑞

2 ∈ R𝐾×𝐷 , b1 ∈ R𝐷 , b2 ∈ R𝐾 are trainable
parameters. Despite that many other methods can be adopted to
get the sequence embedding and derive the interest distribution,
we empirically find a simple GRU with a 2-layer MLP head yields
promising results most of the time. Besides, the structure of the
target-interest predictor is also not restricted to ID-based sequential
models. Content-based models such as DeepFM [7] can also serve as
the target-interest predictor if other context information is available
(e.g., time of the day, user profiles, item attributes). We leave other
implementations with more context information as future work to
center our contributions in the overall learning framework.
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Table 1: Statistics of datasets.

Dataset #user
(|U|)

#item
(|I |)

#inter
(
∑
𝑢 𝑁𝑢 )

density

Beauty 22,363 12,101 198,502 0.07%
MovieLens 6,040 3,706 1,000,209 4.47%
CMCC 49,847 29,074 1,300,351 0.09%

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments on three real-world datasets,
including two public benchmarks and one industrial data.

• Beauty1: This is one of the series of product review datasets
crawled from Amazon [8].

• MovieLens2: This is a widely used recommendation dataset
containing user’s ratings for movies. We choose the 1M
version and treat the ratings as implicit feedback.

• CMCC: This is an industrial dataset collected from China
Mobile, containing video watching activities on smart TV.
We randomly sampled 50,000 users and record their watching
activities in June 2021. Then users and items with less than
5 associated interactions are discarded.

The statistics of datasets are summarized in Table 1.

4.1.2 Baselines. We compare TiMiRec with several representa-
tive models. The baselines are classified into two sets according
to whether they include transformer layers [30] to encode the his-
tory sequence, because we find there are significant performance
gaps between these two kinds of models. The methods without
transformer layers include:

• GRU4Rec [10]: This is the first sequential recommendation
algorithm that utilizes recurrent neural network (RNN) to
model historical interactions.

• YouTube [5]: This is a popular sequential model for indus-
trial recommendations that uses MLP to process the history.

• MIND [17]: This is a novel multi-interest recommendation
method that is capable of extracting multiple interest vectors
based on the capsule routing mechanism.

• ComiRec [2]: This is a state-of-the-art multi-interest recom-
mendation method. We use the ComiRec-SA version based
on attention mechanism because of its stable performance.

The methods with transformer layers include:
• SASRec [13]: This method utilizes self-attention to exploit
the mutual influence between historical interactions.

• TiSASRec [19]: This method improves SASRec [13] by con-
sidering time intervals between historical interactions.

• ComiRec+: This is an enhanced version of ComiRec that
first passes the historical item embeddingsH to a transformer
layer to get contextual item embeddings in the sequence.
Then the same attentive method as ComiRec is utilized to
derive multi-interest embeddings.

1https://jmcauley.ucsd.edu/data/amazon/links.html
2https://grouplens.org/datasets/movielens/

4.1.3 Evaluation Protocols. We adopt the leave-one-out strategy
to evaluate model performance, which is widely used in previous
work [19, 33, 35]. For each interaction sequence, we use the most
recent interaction for testing, the second recent interaction for
validation, and the remaining interactions for training. As for the
candidate items, previous studies usually sample 100 negative items
that the user has not interacted with and rank the ground-truth
item together with these items. However, recent work [15] has
demonstrated that sampled metrics may lead to inconsistent results
when the number of negative items is small. To strike a balance
between non-sampling evaluation and computational efficiency, we
randomly sample 1000 items as negative items, and this setting is
shown to be close to the non-sampling version [18].

We employ Hit Ratio (HR) and Normalized Discounted Cumula-
tive Gain (NDCG) [12] as evaluation metrics (abbreviated by H@K
and N@K respectively). HR@K measures whether the target item
appears in the Top-K recommendation list, while NDCG@K fur-
ther concerns about its position in the ranking list. We abbreviate
HR@K and NDCG@K to H@K and N@K in the following for
convenience. Each experiment is repeated 5 times with different
random seeds and we report the average score.

4.1.4 Implementation Details. We use Adam as the optimizer and
search for hyper-parameters on the validation set. For fair com-
parisons, the batch size is set to 256, the embedding size is set
to 64, and the maximum history length is set to 20 for all the
methods. The learning rate is tuned between [1𝑒−3, 5𝑒−4, 1𝑒−4];
the weight decay is tuned between [1𝑒−4, 1𝑒−6, 1𝑒−8, 0]. For multi-
interest recommendation methods, we tune the interest number
𝐾 between [2, 4, 6, 8]. For TiMiRec, the temperature 𝑇 is tuned be-
tween [0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10]. We tune other baseline-specific
hyper-parameters within the range suggested by their authors.
The experiments are supported by JIUTIAN Artificial Intelligence
Platform3. The codes are publicly available for reproducibility4.

4.2 Overall Performance
For our proposed TiMiRec, we devise two versions to compare with
the two kinds of baselines:

• TiMiRec: This is the standard version that uses the attentive
method described in Section 3.5.1, which is equivalent to
adopt ComiRec as the multi-interest extractor.

• TiMiRec+: This enhanced version adopts ComiRec+ as the
multi-interest extractor, which includes a transformer layer
in multi-interest extraction.

Table 2 summarizes the performance of different methods.
First, we can observe that multi-interest recommendation meth-

ods (e.g., MIND, ComiRec) perform better than traditional sequen-
tial models that only give an overall embedding for each user (e.g.,
GRU4Rec, YouTube) on Beauty and CMCC. This shows the impor-
tance to consider multi-faceted user interests in sequential recom-
mendation. Besides, the proposed framework leads to consistently
better results compared to the base multi-interest method (TiMiRec
vs. ComiRec, TiMiRec+ vs. ComiRec+). TiMiRec and TiMiRec+
achieve the best performance within the corresponding model set,

3https://jiutian.10086.cn/
4https://github.com/THUwangcy/ReChorus/tree/CIKM22
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Table 2: Top-K recommendation performance on the three datasets. TiMiRec and TiMiRec+ adopt ComiRec and ComiRec+ as
the multi-interest extractor, respectively. The best results within the same set of methods are in bold face, and the overall best
results are underlined. The superscripts ∗ and ∗∗ indicate 𝑝 ≤ 0.05 and 𝑝 ≤ 0.01 for the paired t-test of TiMiRec/TiMiRec+ vs. the
best baseline within the corresponding model set.

Setting Models without Transformer Layer Models with Transformer Layer

Dataset Metric GRU4Rec YouTube MIND ComiRec TiMiRec SASRec TiSASRec ComiRec+ TiMiRec+

Be
au
ty

H@5 0.1072 0.1040 0.1193 0.1257 0.1437∗∗ 0.1435 0.1529 0.1546 0.1573∗

H@10 0.1552 0.1563 0.1727 0.1832 0.2006∗∗ 0.2058 0.2084 0.2123 0.2196∗

H@20 0.2107 0.2264 0.2492 0.2543 0.2645∗∗ 0.2706 0.2760 0.2809 0.2887∗∗

N@5 0.0719 0.0702 0.0809 0.0852 0.1006∗∗ 0.1004 0.1087 0.1095 0.1112∗

N@10 0.0873 0.0870 0.0981 0.1038 0.1118∗∗ 0.1192 0.1266 0.1272 0.1313∗

N@20 0.1013 0.1046 0.1173 0.1217 0.1350∗∗ 0.1356 0.1436 0.1459 0.1488∗

M
ov
ie
Le
ns

H@5 0.2730 0.2336 0.1863 0.2513 0.3091∗∗ 0.3124 0.3212 0.2745 0.3333∗∗

H@10 0.3964 0.3406 0.2881 0.3659 0.4310∗∗ 0.4407 0.4397 0.3906 0.4556∗∗

H@20 0.5323 0.4719 0.4152 0.4937 0.5625∗∗ 0.5674 0.5712 0.5091 0.5843∗∗

N@5 0.1875 0.1597 0.1229 0.1708 0.2136∗∗ 0.2177 0.2241 0.1875 0.2346∗∗

N@10 0.2273 0.1942 0.1558 0.2078 0.2529∗∗ 0.2593 0.2625 0.2249 0.2741∗∗

N@20 0.2616 0.2274 0.1877 0.2400 0.2861∗∗ 0.2910 0.2956 0.2549 0.3067∗∗

CM
CC

H@5 0.3978 0.4170 0.4229 0.4547 0.4812∗∗ 0.4681 0.4768 0.4831 0.4886∗

H@10 0.5121 0.5328 0.5381 0.5716 0.5934∗∗ 0.5828 0.5882 0.5960 0.6020∗∗

H@20 0.6306 0.6453 0.6533 0.6845 0.7018∗∗ 0.6853 0.6937 0.6997 0.7091∗∗

N@5 0.2916 0.3064 0.3119 0.3356 0.3636∗∗ 0.3533 0.3615 0.3662 0.3690∗

N@10 0.3286 0.3438 0.3492 0.3735 0.3999∗∗ 0.3905 0.3975 0.4027 0.4057∗

N@20 0.3587 0.3723 0.3784 0.4020 0.4273∗∗ 0.4164 0.4242 0.4290 0.4329∗

respectively. It is noteworthy that TiMiRec even performs better
than SASRec on CMCC in the absence of transformer layers, and
TiMiRec+ further outperforms state-of-the-art sequential recom-
mendation methods. This shows the importance of taking target
interest distribution into consideration. To measure how accurate is
the target-interest predictor in TiMiRec, we additionally calculate
the Jensen–Shannon divergence (lower is better) between the pre-
dicted interest distribution q𝑢,𝑡 and the target one p𝑢,𝑡 on the test
set. The averaged result on Beauty and MovieLens is 0.0032 and
0.0005, respectively. This shows that TiMiRec is able to accurately
predict the target interest, leading to better recommendations.

Second, we notice that previous multi-interest recommendation
methods give poor performances on MovieLens, which may depend
on the multi-interest characteristics in different datasets. If there
is no obvious multi-faceted user interests in the dataset, the intro-
duction of multiple interest embeddings and the greedy inference
strategy might hurt the recommendation performance. Differently,
it is noteworthy that TiMiRec still achieves the best performance
on MovieLens and leads to substantial improvements compared to
ComiRec. The target-interest predictor and the distillation loss help
the model dynamically aggregate different interests and make it
adaptive to various application scenarios.

4.3 Effect of Target-Interest Distillation
In this section, we conduct additional experiments to validate our
motivation and better understand the rationale of the target-interest
distillation in TiMiRec. Previous multi-interest recommendation

methods mainly focus on how to extract multiple interest embed-
dings, while the greedy inference strategy may lead to incompatibil-
ity between the recommendation result and the actual user intent.
The key insight of target-interest distillation in our TiMiRec is to
dynamically aggregate multi-interest embeddings according to the
current context. Here we compare different aggregation methods of
multi-interest embeddings to show the superiority of target-interest
distillation. Specifically, three pooling methods are compared here:

• max pooling: This is equivalent to the greedy inference
strategy in previous works, which uses the best matching
interest to calculate ranking scores.

• mean pooling: This variant directly uses the mean opera-
tion to aggregate multi-interest embeddings, which means
all the interests are treated equally.

• attn pooling: This method uses the history embedding s𝑢,𝑡
as the query vector to aggregate multi-interest embeddings
via attention mechanism, which can be taken as TiMiRec
without the distillation loss (only Lrec is optimized).

Table 3 shows the performance of different methods on Beauty
and MovieLens. We can see that max pooling and mean pooling
yield similar results, while attention pooling leads to significantly
better performance. This shows that it is crucial to consider the
target interest distribution in different contexts, rather than just
focusing on the best matching interest or treating each interest
equally. Meanwhile, TiMiRec achieves further improvements com-
pared to attention pooling. The reason is that user intent is generally
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Table 3: Comparison with different aggregation methods of
multi-interest embeddings. TiMiRec is significantly better
than other aggregation methods with 𝑝 ≤ 0.05.

Aggregation Method Beauty MovieLens

H@10 N@10 H@10 N@10

max pooling (ComiRec) 0.1832 0.1038 0.3659 0.2078
mean pooling 0.1738 0.0975 0.3623 0.2086
attn pooling (w/o distill) 0.1791 0.1043 0.4258 0.2503

TiMiRec 0.2006 0.1118 0.4310 0.2529

= 0 (0, 0.01] (0.01, 0.02] (0.02, 0.05] > 0.05
JS Divergence

0

2

4

6

8

10

lo
g(

N
)

ComiRec
TiMiRec w/o distill
TiMiRec

Figure 2: Distribution of Jensen–Shannon divergence be-
tween interest distributions of the target item and the top-1
recommended item for different methods on the test set.

hard to predict. It might be not adequate to only rely on the final
recommendation loss. With the help of the proposed target-interest
distillation loss, the target-interest predictor in TiMiRec is able to
predict the interest distribution more accurately.

Further, we calculate the Jensen–Shannon divergence (lower is
better) between interest distributions of the target item and the
top-1 recommended item for different methods on the test set. Fig-
ure 2 gives the distribution of JS divergence on the Beauty dataset.
Results show that the recommended top-1 item of TiMiRec is more
compatible to the actual target item (i.e., higher for =0, (0, 0.01]),
and there are obviously less incompatible cases (i.e., lower for
(0.01, 0.02], (0.02, 0.05], >0.05). In particular, we find ComiRec leads
to far more cases where the recommended item has a very different
interest distribution from the target one (i.e., >0.05), which results
from the greedy inference strategy to a large extent. A separate
target-interest predictor (w/o distill) partially helps alleviate this
issue, but it is inferior to TiMiRec without the help of the distilla-
tion loss. The proposed target-interest distillation loss leverages
the target interest distribution as an additional supervision signal
to instruct the predictor. Although the target interest distribution
is only available during training, results show that this supervision
signal enhances the generalization ability of the target-interest pre-
dictor, leading to less incompatibility between the target and the
recommended item.

Table 4: Performance of TiMiRec variants.

Method Beauty MovieLens

H@10 N@10 H@10 N@10

joint train 0.1787 0.1030 0.4267 0.2483
w/o stopgrad 0.1971 0.1157 0.4260 0.2468

TiMiRec 0.2006 0.1118 0.4310 0.2529
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Figure 3: Parameter sensitivity analysis.

4.4 Further Analysis
To validate the effectiveness of other designs in our TiMiRec, here
we compare with another two variants:

• joint train: This variant discards the pretraining process
and jointly optimizes the final objective L from scratch.

• w/o stopgrad: This variant removes the stop-gradient oper-
ation in the target-interest distillation loss.

Table 4 shows the performance of these variants.
Firstly, joint training leads to much worse results on Beauty,

but achieves a promising performance on MovieLens. Remember
that ComiRec is effective on Beauty but performs badly on Movie-
Lens. Hence, the pretraining might be more useful on datasets with
obvious multi-interest characteristics, where the multi-interest ex-
tractor can be trained to get reasonable interest representations.
This benefits the learning process by providing more accurate target
interest distribution at the beginning of the finetuning stage.

Secondly, w/o stopgrad results in a little performance drop. Al-
though the differences are not that obvious, we find w/o stopgrad
will hurt the diversity of interest representations because multi-
interest embeddings are updated to approach the predicted interest
distribution. We calculate the averaged L2-distance between inter-
est embeddings for each user on Beauty, the distance decreases
from 4.08 (TiMiRec) to 0.69 (w/o stopgrad), which is not desirable
for further usages of interest embeddings (e.g., show representa-
tive items of different interests to the user in consideration of the
explainability). Differently, TiMiRec achieves better performances
and maintains the difference between interests as expected.

4.5 Parameter Sensitivity
Figure 3 showsHR@10 of ComiRec and TiMiRecwhen changing the
interest number 𝐾 from 1 to 8 on Beauty and CMCC datasets. First,
we can see that TiMiRec is consistently better than ComiRec under
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Interest 2: movieInterest 1: cartoon

⋯ ⋯
Target ItemUser History Sequence

Top-1 rec item

of ComiRec

Top-1 rec item

of TiMiRec

ComiRec ( multi-interest extractor )

TiMiRec ( + target-interest predictor )

greedy inference

Predicted Interest 
Distribution+Multi-Interest 

Embeddings
0.620.38

target-interest

aware emb

Interest 1 emb

moviecartoon

movie
cartoon

Figure 4: A case study on CMCC dataset. The multi-interest extractor generates two interests from the user history sequence: 1)
cartoon and 2) movie. When making recommendations, ComiRec only considers the best matching interest for each candidate
item, and hence wrongly recommends a cartoon because it gets the maximal matching score. However, after a series of cartoon
watching, the interest for parents to watch movies may take advantage. TiMiRec can capture such dynamic intent with the
target-interest predictor and gives the exactly correct recommendation.

different settings5 of 𝐾 , while the best choice may be determined
by the dataset. Users in the Beauty dataset may have more diverse
interests (e.g., jewelry, handbags, and cosmetics), and the best result
is achieved when 𝐾 = 4. In the scenario of video recommendation
in CMCC, user interests are more concentrated and 𝐾 = 2 leads to
promising results. This is in general reasonable that each family
has two aspects of interests (e.g., interests for parents and children).

4.6 Case Study
Figure 4 gives a case study of the top-1 recommendation results of
ComiRec and our TiMiRec on the CMCC dataset when𝐾 = 2. Given
the historical interaction sequence of this user, the multi-interest
extractor generates two interests in terms of 1) cartoon and 2) movie.
These two interests are probably corresponding to the children and
parents in this family. It is noteworthy that only ID information is
utilized in our model. Despite that, items in the history sequence are
divided into reasonable groups, which validates the effectiveness
of the multi-interest extractor.

When making recommendations, ComiRec only considers the
maximal matching score of each candidate item towards different
user interests. As a result, a cartoon similar with the recently watch-
ing ones is ranked the highest. However, after watching a series
of cartoons continuously, the interest for parents to watch movies
may take advantage. Due to the target-interest predictor and the

5When 𝐾 = 1, TiMiRec is equivalent to ComiRec because there is only one interest.

distillation loss, the proposed TiMiRec successfully captures such
dynamic intent. After aggregating matching scores w.r.t. multiple
interests according to the predicted interest distribution, the movie
(target item) gets a higher ranking score and our TiMiRec gives the
exactly correct recommendation.

5 CONCLUSION
In this paper, we propose an effective and flexible framework to
make use of the target interest distribution for multi-interest rec-
ommendation, called TiMiRec. The proposed framework uses a
separate target-interest predictor to infer the interest distribution
according to the target context. This distribution will be utilized
to adapatively aggregate different user interests. Considering that
user intents are latent and hard to predict, a target-interest distil-
lation loss is proposed to leverage the target interest distribution
as an additional supervision signal. The target interest distribution
(measured by the similarity between each interest embedding and
the target item) is only available during training but is shown to
be able to help the predictor make more accurate predictions in
different contexts, which is usually neglected in previous studies.
Experimental results show that our framework achieves significant
performance improvements and is flexible to work with various
multi-interest recommendation models. In the future, we plan to
take further investigations on how to introduce temporal infor-
mation into the target-interest predictor more effectively to make
better interest predictions.
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